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By experiments and supporting computations we investigate two methods of transport
enhancement in two-dimensional open cellular flows with inertia. First, we introduce
a spatial dependence in the velocity field by periodic modulation of the shape of
the wall driving the flow; this perturbs the steady-state streamlines in the direction
perpendicular to the main flow. Second, we introduce a time dependence through
transient acceleration–deceleration of a flat wall driving the flow; surprisingly, even
though the streamline portrait changes very little during the transient, there is still
significant transport enhancement. The range of Reynolds and Reynolds–Strouhal
numbers studied is 7.7 6 Re 6 46.5 and 0.52 6 ReSr 6 12.55 in the spatially depen-
dent mode and 12 6 Re 6 93 and 0.26 6 ReSr 6 5.02 in the time-dependent mode.
The transport is described theoretically via lobe dynamics. For both modifications, a
curve with one maximum characterizes the various transport enhancement measures
when plotted as a function of the forcing frequency. A qualitative analysis suggests
that the exchange first increases linearly with the forcing frequency and then decreases
as 1/Sr for large frequencies.

1. Introduction
Two-dimensional flow in cavities, wedges and indentations, around corners and

steps, and over obstructions has received considerable attention in the literature
(see, for example, Shankar & Deshpande 2000 and Higdon 1985). An important
feature of this class of flows, often referred to as cellular flows, is the presence of
limiting streamlines – separatrices – which prohibit direct fluid exchange between the
recirculating flow region and the surrounding fluid when the flow is steady. Molecular
diffusion is the only transport mechanism across a separatrix.

Separatrices hinder transport. This is especially important in small-scale flows.
Examples of cellular flows where there is interest in the suppression or enhancement
of transport rates are wide-ranging, including the cleansing of rough surfaces (Tighe &
Middleman 1985), various types of electrochemical reaction engineering applications
(Alkire & Verhoff 1994), the understanding of pitting corrosion mechanisms (Frankel
1998), transport in or around printed circuit boards (Meinders, Meer & Hanjalic
1998), and efficient transport to cells in perfusion bioreactors (Horner et al. 1998).

† Author to whom correspondence should be addressed: e-mail ottino@chem-eng.
northwestern.edu
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Figure 1. Experimental realization of the open cavity flow. The flow in the channel is driven by a
cylinder. We consider cavity aspect ratios (= W/H) of either 1 or 0.5. Examples obtained using the
computational methods described in § 2. (Re = 46.5)

In what ways can transport into a cellular flow be enhanced? We investigate two
different routes: geometrically modifying the boundary driving the flow and making
the flow time-dependent. In either case, these modifications destabilize one of the
wall attachment points of the separatrix, allowing fluid exchange between the cavity
and channel. We analyse the transport enhancement in terms of the turnstile-lobe
transport mechanism (Mackay, Meiss & Percival 1984; Rom-Kedar, Leonard &
Wiggins 1990). This mechanism is so-named because flow perturbations lead to the
formation of lobes that transfer material across the separatrix through what looks
like a turnstile. We examine the effect of both the frequency and the amplitude of
periodic perturbations on the transport enhancement. The system of interest is the
open cavity flow (figure 1). As we shall see, this geometry is a particularly clear
illustration of the turnstile-lobe transport mechanism because a single lobe pair forms
at only one place in most of the experiments.

There is only a handful of studies of chaotic mixing in open cavities; they are
primarily computational. Jana & Ottino (1992) show a single computation illustrating
the removal of material from an open cavity by the oscillating motion of an impinging
jet above the cavity mouth. Howes & Shardlow (1997) examine the cleaning of a series
of open cavities in a channel with a pulsatile inlet flow. They show that the relative
amplitude of the forcing flow must increase as the Reynolds number increases to
achieve full penetration of particles into the channel (Re 6 120, 0.15 < Sr < 0.25,
where Sr is Strouhal number). Fang, Nicolaou & Cleaver (1999) consider fluid
transfer for accelerating flow past an open cavity for Reynolds numbers ranging
from 50 to 400. At sufficiently high Reynolds numbers, the introduction of obstacles
upstream of an open cavity creates oscillations in the flow that induce fluid exchange
(Garrison & Rogers 1994; Shehata et al. 1999); even the presence of multiple cavities
in series can enhance transport (Ghaddar et al. 1986). Other relevant geometries
where the effects of chaotic mixing have also been examined include baffled channels
(Roberts & Mackley 1995), separation bubbles (Ghosh, Leonard & Wiggins 1998),
and Rayleigh–Bénard flow (Solomon, Thomas & Warner 1998). Solomon et al. (1998)
observed experimentally that transport increases as the amplitude of the forcing
increases.

Recognizing that the flux of material into an open flow typically increases lin-
early when the forcing frequency is small, and decreases exponentially as the forcing
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frequency goes to infinity, Rom-Kedar & Poje (1999) recently suggested that a uni-
versal curve with at least one maximum qualitatively describes the material exchange
in the region of a perturbed hyperbolic saddle. Their analysis is specific to flows
containing hyperbolic saddles, however. This paper addresses experimentally the
frequency-dependence issue for parabolic-type saddles, in a quantitative manner, and
over a broad range of forcing frequencies. Experimental results compare well to a
computational model of the transiently forced system.

The rest of this paper is organized as follows: in § 2 we introduce the time-dependent
and spatially dependent flows as well as the numerical solution methods. Section 3
gives the relevant theory from lobe dynamics for describing turnstile-lobe transport. In
§ 4 we describe the experimental apparatus and details of the experimental protocol,
and in § 5 we give a detailed description of the observed transport into an open
cellular flow. The results for the spatial modification are summarized in § 6 and the
results for the time-dependent modification are presented in § 7. The conclusions are
summarized in § 8.

2. The open cavity flow
The basic open cavity system is shown in figure 1. The top wall moves from left to

right in every figure in this paper. Therefore, we refer to the left-hand cavity wall as the
upstream side and the right-hand cavity wall as the downstream side. A separatrix ψs
separates the channel and cavity streamlines. The separatrix attaches to the sidewalls
of the cavity, near the cavity mouth, at parabolic points: pu is the upstream parabolic
point and pd is the downstream parabolic point. While we recognize the presence
of an infinite series of corner (Moffatt) eddies in each corner of the cavity, we do
not consider the transport associated with these eddies owing to their small size and
circulation strength relative to the main cavity flow.

In the steady state, the presence of the separatrix means that there is no fluid
exchange between the cavity and the channel. In order to enhance transport, we
explore two different types of (periodic) time-dependent modifications: either we
make the shear flow in the channel vary in time (T-mode) or we modify the boundary
driving the flow such that there is spatial variation in the boundary geometry (SN-
mode). In either case, perturbations give rise to direct fluid exchange between the
two environments through the turnstile-lobe transport mechanism; we discuss this
mechanism in more detail in the next section. The net effect of the flow modifications
is the destabilization of the downstream parabolic attachment point of the separatrix,
leading to the formation of lobes (figure 2). Lobes are the fundamental building
blocks for transport enhancement. Repeated operation creates a mixing zone in the
cavity in which the flow is chaotic. KAM tori isolate a region within the mixing zone
where the flow is regular.

In the T-mode, the (smooth) driving wall accelerates from rest to a maximum speed
and then immediately decelerates, at the same rate, back to zero (figure 3). The change
in the velocity field for this type of flow is primarily tangent to the direction of wall
motion. In the SN-mode, we create flow disturbances that are primarily perpendicular
to the direction of the shear flow by attaching N cylindrical rods to the driving wall
(figure 4). In a subset of the SN-mode experiments, when N = 10, we also attach a
thin rubber sheet on top of the rods to approximate a sinusoidal variation in the
boundary geometry (figure 4b). The speed of the driving wall in the SN-mode is
constant.
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Figure 2. Separation of the stable and unstable manifolds that make up the separatrix results in
the formation of lobes. Lch,ca represents channel (‘ch ’) material that is entrained in the cavity (‘ca ’)
and vice versa for Lca,ch. The area of Lch,ca equals that of Lca,ch for incompressible flows. The dashed
line represents the initial (final) position of the dye-line before (after) the perturbation and pd is the
downstream parabolic wall-attachment point.
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Figure 3. The velocity profile for the transient modification (T-mode) has a sawtooth or
triangular shape. The period of each sawtooth cycle is 2vmax/a.

The system is described in terms of the Navier–Stokes equations,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u, (2.1)

and we assume that the fluid is incompressible, i.e. ∇ · u = 0. The characteristic
length scale and velocity are the cavity width W and the maximum cylinder velocity
vmax. The forcing period T is used to scale time. Substituting

t→ t

T
, x→ x

W
, u→ u

vmax
, (2.2)
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Figure 4. Examples of SN-mode flows. The number of rods varies between 1 and 10. (b) An outer
wall is also attached on top of the rods and cylinder when there are 10 rods present, a modification
designed to approximate a smooth, sinusoidal variation in the wall geometry. The boundary motion
is constant (= vmax) in the SN-mode.

into equation (2.1) gives

Re

(
Sr
∂u

∂t
+ u · ∇u

)
= −∇P + ∇2u, (2.3)

where we have used a viscous scaling for the pressure term. Re is the Reynolds
number

Re =
vmaxW

ν
, (2.4)

where ν = µ/ρ is the kinematic viscosity of the fluid, and Sr is the Strouhal number

Sr =
W

vmaxT
. (2.5)

The Reynolds number is the ratio of the viscous time scale (W 2/ν) to the convective
time scale (W/vmax) and the Strouhal number is the ratio of the convective time
scale to the characteristic time scale of the forcing (T ). The expressions for T in
the T-mode and in the SN-mode are different; we consider this issue in § 6 and § 7.
The consequence of forcing the system externally is that two independent parameters
describe the inertial terms in equation (2.3): Re and its product with Sr

ReSr =
W 2

νT
. (2.6)

We characterize all results in terms of Re and ReSr. Variations in Re corresponds to
changing the amplitude of the forcing, while varying ReSr corresponds to changing
the forcing frequency.

We use the finite element package FIDAP (version 7.52) for the numerical solution
of the equations of motion. We solve the two-dimensional form of equation (2.3) with
no-slip boundaries, utilizing a backward Euler approximation of the time derivatives
in the T-mode simulations and a pseudo-steady approximation of the velocity field for
the SN-mode simulations. The pseudo-steady approach for the SN-mode eliminates
the need for a moving mesh as rods pass by the cavity. We advect passive tracers
in the flows using either a fourth-order Runga–Kutta scheme with variable time step
or FIDAP’s internal advection routine.

Consider now the change in the flow patterns during a single perturbation cycle.
Figure 5 shows the instantaneous streamlines for the S10 modification. Marked changes
in the velocity field occur as waves pass over the cavity: channel streamlines penetrate
well into the cavity, and vice versa, and there is clear overlapping of streamline
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Figure 5. Time-series illustrating the instantaneous streamline pattern for the S10 flow past an open
cavity. The dot highlights the position of a specific wave as it passes over the cavity; the wall
displacement is 1/6th of a wavelength between frames (Re = 46.5, ReSr = 47.0, W/H = 1.0).

portraits at subsequent times. This immediately suggests that particle trajectories in
the cavity are chaotic. Figure 6 shows a time series of the instantaneous streamlines for
the T-mode. The cellular flow pattern is only slightly asymmetric, showing similarity
to that for steady motion at all times. A close-up of the separatrix region (figure 7)
shows that the instantaneous separatrix changes position only slightly during a single
flow cycle. Nonetheless, we shall show that transient perturbations produce significant
transport.

3. Lobe dynamics
In this section we discuss a few concepts from dynamical systems theory that will

be crucial for understanding the transport mechanism associated with the open cavity
flow. Transport in aperiodic flows is described in Haller & Poje (1998) and Miller et
al. (1997). The presentation below is based on Malhotra & Wiggins (1998).

At each instant of time there is a point on the upstream vertical wall of the cavity
where fluid separates from the wall, denoted pu(t). This point moves periodically in
time with the period of the flow. In the language of dynamical systems theory, this
is a saddle-type parabolic trajectory. If we consider the stroboscopic (Poincaré) map
associated with the flow, then this point is a parabolic fixed point for the Poincaré map
(which means that the two eigenvalues of the matrix associated with the linearization
of the Poincaré map both lie on the unit circle). Despite this fact, this point exhibits
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(a)  t̂ = 0.15 (b)  t̂ = 0.30

(c)  t̂ = 0.45 (d)  t̂ = 0.55

(e)  t̂ = 0.70 ( f )  t̂ = 0.85

Figure 6. Instantaneous streamlines for one cycle of the T-mode. t̂ is the fraction of one sawtooth
cycle, i.e. t̂ = t/(2vmax/a) (Re = 92.9, ReSr = 1.26, W/H = 1.0).

the flow topology of a saddle point. Similarly, there is a point on the downstream
vertical wall of the cavity where fluid impinges on the wall and separates, with some
moving upward and some moving downward. This point, denoted pd(t), is also a
saddle-type parabolic trajectory.

In dynamical systems theory, hyperbolic saddle points possess stable and unstable
manifolds, and these invariant manifolds form the template in the flow on which
turnstiles and lobes are constructed. In recent years there has been progress in the
development of theorems for stable and unstable manifolds of saddle-type parabolic
points, see McGehee (1973), Casasayas, Fontich & Nunes (1992), Yuster & Hackborn
(1997) and Fontich (1999). These results allow us to conclude that pu(t) has an
unstable manifold, denoted Wu(pu(t)), likewise pd(t) has a stable manifold, denoted
Ws(pd(t)).

Manifolds are invariant curves, i.e. particle trajectories that start on these curves
must stay on them for all time. This is the mathematical statement of the fact that
they are material curves. Hence, they are barriers to transport in the sense that
no particle trajectories can cross them. Another property of invariant manifolds is
that particle trajectories that start on Ws(pd(t)) approach pd(t) as t → ∞, likewise
trajectories that start on Wu(pu(t)) approach pu(t) as t → −∞. When the flow is
steady, Wu(pu) and Ws(pd) coincide to create the separatrix (e.g. ψs in figure 1).
When the system is forced appropriately, Wu(pu(t)) and Ws(pd(t)) separate to create
a heteroclinic tangle (figure 8). We now define regions bounded by pieces of stable
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Figure 7. We track the change in position of a streamline passing very near the separatrix (from
below). The origin is located at the centre of the cavity mouth, and note that the scale of the
y-axis is exaggerated. (a) Acceleration phase of the flow: t̂ = 0 s (—–), t̂ = 0.15 s (- - -), t̂ = 0.3 s
(– – –), t̂ = 0.45 s (- . - . - . -), and t̂ = 0.55 s (– - – - –); and (b) deceleration phase of the flow cycle:
t̂ = 0.55 s (– - – - –), t̂ = 0.7 s (- - -), t̂ = 0.85 s (- . - . - . -), and t̂ = 0.975 s (—–). See figure 6 for
simulation conditions.

pu(s) pd(s)

Figure 8. Portions of the stable (- - -) and unstable (—) manifolds derived from the computational
model for the T-mode. The asymmetry of the manifold structure is due to the presence of inertia
(T-mode: Re = 46.5, ReSr = 1.26, W/H = 1.0).

and unstable manifolds, called lobes, which completely determine transport between
the cavity and the channel.

At a fixed time t = τ consider a point p ∈ Ws(pd(τ)) ∩Wu(pu(τ)). Let [pd(τ), p]
denote the segment of Ws(pd(τ)) connecting pd(τ) to p and let [pu(τ), p] denote the
segment of Wu(pu(τ)) connecting pu(τ) to p. Then p is said to be a primary intersection
point (pip) if [pd(τ), p] and [pu(τ), p] intersect only at p (see figure 9).

With this definition we can now define a lobe. Suppose p and q are two pips such
that there are no other pips on the segments of Ws(pd(τ)) and Wu(pu(τ)) that connect
p and q. Then the region at the time t = τ bounded by the segments of Ws(pd(τ)) and
Wu(pu(τ)) that connect p and q is called a lobe, which we denote by Lpq (see figure 9).
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Figure 9. A lobe, Lpq , at a fixed time τ. Here the superscript ‘pq’ is used to explicitly denote the
fact that this lobe is defined by segments of the stable and unstable manifolds that intersect at
the primary intersection points p and q. We only show enough of the length of the manifolds to
illustrate one lobe. The lobe shape is also distorted with respect to its true shape for clarity.

The time evolution of lobes can be deduced from two rules:
Rule 1: Maintenance of order under time evolution. Since at any fixed time t = τ

the curves Wu(pu(τ)) and Ws(pd(τ)) are one-dimensional, points on them can be
ordered. We define an ordering of points on Ws(pd(τ)) as follows. For any two points
qτ, q̄τ ∈ Ws(pd(τ)) we say that qτ <s q̄τ if qτ is closer than q̄τ to pd(τ) in the sense of
arclength along the curve Ws(pd(τ)). A similar type of ordering applies to points on
Wu(pu(τ)). Let x(t, t0, x0) denote the fluid particle trajectory that passes through the
point x0 at time t = t0. Then x(t, τ, qτ) ≡ qτ+t, x(t, τ, q̄τ) ≡ q̄τ+t denote points at time
τ + t that are the time evolution of the points qτ, q̄τ. By invariance, these points are
also in Ws(pd(τ + t)). Moreover, we have qτ+t <s q̄τ+t. This follows from uniqueness
of solutions, otherwise there would be an intermediate time on which the trajectories
passed through each other.

Rule 2: Invariance of intersections. If the stable and unstable manifolds of a trajec-
tory (or two different trajectories) intersect at a fixed time, then they intersect for all
time. This simply follows from the fact that the manifolds are invariant for all time.

Let {tn}Nn=0 be a monotonically increasing sequence of times, where we could have
N = ∞. These are the times at which we observe the flow. If x(t, t0, x0) denotes
the fluid particle trajectory passing through the point x0 at t = t0 then, for each
n ∈ {0, . . . , N}, we have the map

fn : xn 7→ fn(xn) ≡ x(tn+1, tn, xn) = xn+1, (3.1)

which is just the mapping of points under the flow from time tn to tn+1. The inverse
map is given by

f−1
n : xn+1 7→ f−1

n (xn+1) ≡ x(tn, tn+1, xn+1) = xn. (3.2)

At time t = tn choose a point qn on Wu(pu(tn)) ∩Ws(pd(tn)). Let U[pu(tn), qn] denote
the segment of Wu(pu(tn)) beginning at pu(tn) and ending at qn and let S[pd(tn), qn]
denote the segment of Ws(pd(tn)) beginning at pd(tn) and ending at qn. The points in
the sequence {qn} are chosen such that

qn <s f
−1
n (qn+1), ∀n ∈ Z, (3.3)

and are referred to as boundary intersection points (bips). The sequence {qn} can
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Figure 10. The turnstile-lobe transport mechanism. The dashed line is the stable manifold of pd
and the solid line is the unstable manifold of pu. (a) t = tn−1, (b) t = tn.

always be chosen to satisfy this constraint as a result of the fact that all points in
Wu(pu(t)) ∩Ws(pd(t)) at a given time will have moved closer to Ws(pd(t)) – closer in
the sense of distance in arclength from pd(t) – at any later time. This sequence of bips
is used to construct a sequence of time-dependent boundaries and families of special
lobes called ‘turnstiles’.
Bn ≡ U[pu(tn), qn] ∪ S[pd(tn), qn] is a curve at time tn joining Wu(pu(tn)) and

Ws(pd(tn)). Locally, this curve separates the flow into two regions, which we de-
note by Rnca and Rnch (here the superscript on the regions indicates that they vary as tn
varies; the subscript ‘ca ’ denotes cavity and the subscript ‘ch ’ denotes channel). We
are concerned with transport across this family of curves {Bn}Nn=0 at the sequence of
times {tn}Nn=0 under the dynamics generated by the sequence of maps {fn}Nn=0.

Consider the point f−1
n−1(qn) ∈ Wu(pu(tn−1)) ∩ Ws(pd(tn−1)) for an arbitrary time

t = tn−1 (by the choice of the sequence {qn}, we have qn−1 <s f
−1
n−1(qn)). There exists

one pip between f−1
n−1(qn) and qn−1. This pip, along with f−1

n−1(qn) and qn−1, defines two
lobes at time t = tn−1; one in Rn−1

ca , denoted by Lnca,ch, and one in Rn−1
ch , denoted by

Ln−1
ch,ca.

The lobes Lnca,ch ∪ Ln−1
ch,ca are called the turnstile lobes associated with the boundary

Bn−1 at the time t = tn−1. The turnstile lobes are important because they mediate
transport across the boundary Bn−1. In fact, by applying the two rules stated earlier
we easily conclude that fn−1(L

n
ca,ch) ⊂ Rnch, fn−1(L

n−1
ch,ca) ⊂ Rnca. Moreover, the only points

that move from Rn−1
ca (resp. Rn−1

ch ) into Rnch (resp. Rnca) under the action of fn−1 by
crossing Bn−1 are those that are in Lnca,ch (resp. Ln−1

ch,ca). The turnstile construction and
the time evolution of the turnstiles is shown in figure 10.

Let A denote an arbitrary region and denote the area of A by µ(A). The instantaneous
flux from Rn−1

ca into Rnch across Bn is given by

φn−1
ca,ch =

1

tn − tn−1

µ(Lnca,ch). (3.4)

Similarly, the instantaneous flux from Rn−1
ch into Rnca across Bn is given by

φn−1
ch,ca =

1

tn − tn−1

µ(Ln−1
ch,ca). (3.5)
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Figure 11. An illustration of global transport resulting from the evolution of the turnstile lobe
entering the cavity intersecting the turnstile lobe leaving the cavity at a later time.

Note that if Bn−1 = Bn (as would be the case for a time-periodic flow), then
φn−1
ca,ch = φn−1

ch,ca. Otherwise, even if the flow is incompressible, the boundaries would
move between time intervals so these two fluxes need not be equal. The fluxes given
above characterize the fluid exiting the cavity and entering the channel, and vice
versa, during a single flow cycle. This aspect of transport is referred to as ‘local’.

It is possible for fluid to enter the cavity from the channel and then re-enter the
channel at a later time. This process is also completely determined by the turnstiles
and lobe dynamics. As we argued earlier, fluid can only enter the channel between
time tn and time tn+1 through the turnstile lobe Lnch,ca. Similarly, fluid can only exit the
cavity between time tn and time tn+1 through the turnstile lobe Lnca,ch. Therefore, the
only way for fluid to enter the cavity and then to exit the cavity at a later time is for
the lobe Lnch,ca to evolve in time in such a way that at a later time it intersects Lmca,ch,
m > n. More precisely, we would have fn+k−1 ◦fn+k−2 ◦ · · · ◦fn+1 ◦fn(Lnch,ca) intersecting

Ln+kca,ch (‘◦’ denotes a composition of the mappings). We illustrate this in figure 11 for
k = 3. This describes a ‘global’ transport process. Nevertheless, the global transport is
still mediated by the time evolution of the turnstile lobes (see Rom-Kedar et al. 1990
for a discussion). This further illustrates the fact that the lobes form a geometrical
template on which transport occurs. Spatially, this template can be very complicated.
However, invariance of the manifolds, and the order property of trajectories on the
manifolds, provide a temporal order that makes understanding the transport relatively
easy.

4. Experimental description
The experimental apparatus consists of a mount table for the alignment and support

of the motor and aluminium cylinder (figure 12a), and the dye advection chamber
(figure 12b). The rotating cylinder drives the flow in the channel. The dye advection
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Figure 12. (a) Side view of the experimental set-up. The mount table supports the com-
puter-controlled stepper motor and the suspending arm. The aluminium cylinder which drives
the flow in the channel is attached to the end of the suspending arm with the axis of rotation
aligned along the height of the cylinder. (b) Top view of the dye advection chamber. The aluminium
cylinder is centred in the dye advection chamber by adjusting the suspending arm. The shaded
region in the cavity highlights the ‘downstream corner’ of the cavity – the region of lobe formation
(W = 4.445 cm, H = 4.445 cm, R = 6.985 cm, h = 3.175 cm).

chamber has a circular shape with four equally spaced cavities of varying size and
shape, only two of which are shown. The four arcs making up the flow channel are
cut from a 10.16 cm i.d. × 0.64 cm thick Plexiglas pipe and the individual cavity walls
are cut from a separate sheet of Plexiglas of the same thickness. The channel and
cavity walls are 17 cm high.

The aluminium cylinder is circular with a 6.99 cm o.d. and is 15 cm high. An
aluminium arm suspends the cylinder 2 cm above the bottom of the dye advection
chamber. The arm can be moved horizontally so as to centre the cylinder in the
advection chamber. We measure the width of the channel at various points around the
cylinder circumference using a micrometer (accurate to 10µm). To level the cylinder
and advection chamber, we use a digital level accurate to 1/10th of a degree. The
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stepper-motor controller is programmable, allowing control of acceleration, velocity,
and displacement of the cylinder.

In the SN experiments of figure 4(a), we glue 1, 2, 4, or 10 equally spaced cylindrical
aluminium rods (1.27 cm o.d.) to a 0.48 cm thick Buna-N rubber backing. These rods
span the entire height of the aluminium cylinder. In the S10 experiments, we also glue
another 0.16 cm thick rubber sheet to the rods and backing (figure 4b) to approximate
a sinusoidal variation in the boundary geometry. For the S10 experiments, the average
error in the rod spacing is 0.25% with a maximum spacing error of 0.6% (errors
reported with respect to the perfect arrangement with equal distance between rods).

We use glycerin as the test fluid. To access the desired Reynolds and Reynolds–
Strouhal number ranges, we increase the water content of the glycerin to either 1.25%
by mass (ρ = 1.260 g cm−3, µ = 9.57 P at T = 22.5◦C (Miner & Dalton 1953)) or to
10% by mass ρ = 1.236 g cm−3, µ = 1.95 P at T = 22.5 ◦C). We measure the viscosity
of the glycerin before and after water addition using a Bohlin VOR Rheometer.
To make the experiments effectively two-dimensional, we create a slip layer by first
placing a high-density, low-viscosity vacuum pump oil (FOMBLIN r© YL-VAC 06/6
perfluouropolyether) in the bottom of the chamber. The viscosity and density of the
oil are 1.2 cP (25 ◦C) and 1.88 g cm−3 (25 ◦C), respectively. We add enough oil to cover
about 2 cm of the base of the aluminium cylinder. The remaining chamber space is
filled with the glycerin/water solution.

Fluorescent dye (Sigma F-6377) mixed with the glycerin marks fluid elements.
Owing to the low concentration of the dye (≈ 0.01% by weight), changes in density
and viscosity of the tracer fluid are negligible. We also assume that the dye solution
is completely miscible in the test fluid, i.e. the dye solution acts as a passive tracer.
We test the neutral buoyancy of the dye solution before each experiment by adjusting
its water content until a dyed blob maintains its vertical position in a beaker of
the working glycerin solution for 10–15 minutes. During an experiment, we use a
syringe to continuously inject fluorescent dye into the system. The dye injection point
is along the channel wall a few centimetres below the fluid surface and well upstream
of the cavity of interest. This positioning minimizes any disturbances that might be
advected downstream. Two UV lamps (360 nm) positioned on either side of the cavity
illuminate the dyed fluid elements.

As the experiments are well outside the Stokes regime, we take care to test that the
flow is effectively two-dimensional. The geometry of our open cavity flow apparatus
is simply a modified Taylor–Couette flow geometry. The critical Taylor number for
the onset of three-dimensional flow in our device is 2800 (Recktenwald, Lücke &
Müller 1993), with a Reynolds number of 493. This value is considerably higher than
the maximum Reynolds number studied experimentally. As another test, we inject
multiple dye-lines at different heights in the chamber during the same experiment.
No differences in lobe size or area coverage are observed during these tests for the
range of Re and ReSr studied. Further, we observe motion of the dye in the vertical
direction only for Reynolds numbers above 150. Below this value, dyed material is
confined to a vertical region that is less than twice the needle diameter (0.16 cm).

Digital 8-bit greyscale images of the cavity are taken using a Kodak Megaplus
1.4 camera containing a 1340× 1038 CCD detector. We use a NIKKOR 200 mm 1 : 4
lens with yellow and UV filters attached. The direction of observation is from above
the cavity, i.e. the camera aims down through the air/glycerin interface. We acquire
an image once per sawtooth cycle in the T-mode and once per revolution in the
SN-mode. We analyse the experimental images using the Khoros 2.2 digital image
processing package. We determine the fractional area coverage of the cavity with dye,
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(a) (b) (c)
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(g) (h) (i)
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Figure 13. Experimental images of the downstream corner of the cavity showing one full cycle of
the turnstile-lobe transport mechanism. The dye-line is pulled into the flow channel during lobe
formation and returns to its initial position at the end of the flow cycle. One of the strengths of
the open cavity geometry is that only one lobe pair forms per perturbation, greatly simplifying
visualization and transport analysis.

and the size of a single lobe, using standard image analysis techniques. An important
experimental issue should be mentioned: because of the circular flow channel, part of
the dye exiting the cavity eventually returns to enter the cavity again (see figure 12).
This means that new lobes steadily become filled with dye during an experiment.
Therefore, we mask out the lobe interiors before determining the area coverage at
each time point.

5. The observed transport between a channel and an open cavity
As discussed in § 3, flow disturbances such as the ones in figures 5 and 6 result in the

formation of lobes at the downstream corner of the cavity. Figure 13 shows a sequence
of experimental images illustrating one cycle of lobe formation. Perturbations cause
dye passing over the downstream corner of the cavity to form a pair of lobes. One lobe
plunges into the cavity and a companion lobe (of the same area) is simultaneously
ejected from the cavity into the flow channel. The material leaving the cavity stays
close to the channel wall and quickly leaves the imaging area.

Two primary measures of transport enhancement are lobe size and rate of lobe
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(a)      Experiment (b)      Computation

d =74

d =223

d =371

d =520

d = 668

Figure 14. Length stretch and area coverage increase dramatically after the dyed material returns
to the turnstile region. Also, note the agreement between the experimental dye advection results
(a) and the numerical model (b). d is the linear cylinder displacement divided by the cavity width
(T-mode, Re = 19.26, ReSr = 0.26).
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d = 50

d =295

d = 640

d = 939

d =1969

Direction of
wall motion

S1-modeS10-mode T-mode

Figure 15. Efficiencies of the various modes of operation. The rate of area coverage is highest for
the S1 system. The final area coverage for the T system is the same as that of the S1 system, but
the T modification requires twice the energy input. The experimental conditions are as follows: T
experiment – Re = 62.0, ReSr = 1.26; S10 experiment – Re = 31.0, ReSr = 31.3; S1 experiment –
Re = 31.0, ReSr = 3.09. The Reynolds number for the T-mode is chosen such that the average
Reynolds number is the same for all three cases.

formation. The product of these two quantities corresponds to the transport rate
of the turnstile. We determine the entrained lobe size µ(Lch,ca), abbreviated as µ(E),
from digital images such as those in figure 13. This is done by determining the
portion of pixels contained within a digital outline of the lobe which lies beneath the
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Figure 16. Area coverage as a function of dimensionless wall displacement d. Area coverage values
are normalized to the area of the cavity beneath the seperatrix. Results are shown for four separate
mixing experiments and the error bars represent two standard deviations in the data (S1-mode,
Re = 31, ReSr = 2.71, H/W = 1.05).

boundary curve B (see § 3). The location of B is estimated from the beginning of a
lobe formation cycle, e.g. figures 13(a) or (k ). The flux of material into the cavity φ
is defined as lobe size divided by the displacement of the cylinder during the lobe
formation event. This definition yields an average value for the flux based on the
energy input into the system. We report all results in terms of the non-dimensional
variables: therefore, lobe size µ(E) is normalized with respect to the cavity area LW
and the flux function φ is normalized to the cavity width W .

Figure 14 shows a comparison between computation and experiment exhibiting
repeated lobe formation events in the T-mode. Lobes roughly outline the more
complicated portions of the unstable manifold of the upstream parabolic point (see
figure 8). We show later that this process leads to an exponential stretch rate of lobe
material. Representative examples from the spatially periodic (S1- and S10-modes)
and transient (T-mode) experiments are shown in figure 15, each with the same
(average) Reynolds number (but varying Reynolds–Strouhal number). The rate of
area coverage and the maximum area coverage are highest for the S1 modification.
There is also considerable transport in the T-mode in spite of the fact that the
instantaneous streamline portraits change very little during a flow cycle. The T and
S1 modifications both outperform the (higher frequency) S10 experiment. The next
two sections address the dependence of transport rates on the forcing frequency, i.e.
ReSr, for the SN-mode and T-mode.

Typical experimental results for the area coverage of the cavity are shown in
figure 16. The initial rate of area coverage is roughly linear, and then goes to zero as
the maximum area coverage for a given Re–ReSr is attained. The eventual decrease
in the rate of area coverage occurs because the presence of residual KAM surfaces
prevents complete coverage of the cavity interior. Thus, the ‘mixing’ region Rmix is
defined as the region of the cavity below B minus all regions isolated by KAM tori.
For experimental purposes, we define Rmix as the size of the mixing region after 100
flow perturbations. The results of figure 16 correspond to four separate runs and
show the repeatability of this type of experiment.
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Figure 17. (a)–(e) Overlays of the detraining turnstile lobe (Lca,ch) (in black) onto experimental dye
advection results. The plot shows that the fractional area coverage of Lca,ch (×) is comparable to
that of the mixing region (�) throughout the experiment. Note that we normalize the dye coverage
to the area of the mixing region in this comparison only (T-mode, Re = 46.5, ReSr = 1.26).

We now note a possible relation between the fractional area coverage of the
detraining turnstile lobe (Lca,ch) and that of the cavity. An overlay of Lca,ch onto
experimental images for the same Re–ReSr allows us to simultaneously observe the
area coverage of the cavity and of Lca,ch (figure 17). The plot shows that the fractional
area coverage of the turnstile mirrors that of the mixing region. Further investigation
of this observation seems warranted. Next, we present more detailed results taken
from experiments and computations of the open cavity flow.

6. SN-mode enhancement: spatially varying boundary forcing
In this section we explore the effect of a spatially varying boundary on fluid

exchange into an open cavity. The characteristic time T is the time between rod
passages, i.e. T = (Nvmax)

−1. Substituting for T in equation (2.6) yields

ReSr =
W 2Nvmax

ν
. (6.1)

We show experimental results for 7.74 6 Re 6 46.5 and 0.52 6 ReSr 6 12.55.
We perform two classes of experiments in order to investigate the effect of the

two inertial terms in the equations of motion (2.3). First, by reducing the speed of
the boundary proportionately as we increase N, Re decreases while ReSr remains
constant. This decreases the wavelength of the disturbance while keeping the wave
speed constant. Second, increasing N while keeping vmax constant increases ReSr while
Re remains constant. The system size, as constructed, however, does not allow for a
broad enough range of ReSr (Re fixed) to fully explore the frequency dependence
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Figure 18. Experimental data summarizing (a) the dimensionless lobe size, (b) the flux, and
(c) the size of the mixing region versus forcing frequency for the SN-mode. Each of these variables
exhibits a maximum as ReSr increases. Data are measured at three separate time points during an
experiment, typically after 10, 30, and 50 perturbations. Each data point represents an average of
these values from 2–3 separate experiments.

of the transport. Therefore, we isometrically scale down the system to increase the
Re–ReSr parameter space.

Figure 18 summarizes the experimental results for the size of the lobe formed
(µ(E)), the flux of material into the cavity (φ), and the size of the mixing region
(Rmix). For Re fixed, a curve with one maximum describes the variation of all three of
these variables with frequency. For ReSr fixed, an increase in the Reynolds number
results in increases in µ(E), φ, and Rmix over the entire range studied. Experimental
results for global transport are shown in figure 19. Figure 19(a) shows that the
total area coverage and flux increase as the Reynolds number increases (ReSr fixed).
Figure 19(b) shows the progression of area coverage for varying ReSr (Re fixed). Two
of the curves initially overlap because they have similar flux values (the circled data
points in figure 18b); they eventually separate because the lobe size and size of the
mixing region differ.

Increases in ReSr eventually lead to decreases in the frequency of lobe formation. In
fact, no lobes form for ReSr high enough. One lobe forms for each rod that passes by
the cavity in most of the experiments shown in figure 18. However, there is a reduction
in the rate of lobe formation for the data in figure 18 marked with an asterisk (*),
where only one lobe forms for every fourth rod that passes by the cavity. This
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Figure 19. (a) Area coverage and transport rate increase as inertial effects increase (ReSr = 3.14
and Re = 15.5 (•), Re = 31.0 (∗)). (b) The progression of the area coverage is initially similar
for the circled experimental flux values in figure 18(b). The rate of area coverage and total area
coverage decrease as ReSr increases for values of ReSr beyond the maximum flux (Re = 31.0 and
ReSr = 2.28 (×), ReSr = Ω.56 (◦), ReSr = 6.27 (�), ReSr = 12.55 (�)).

(a) (b) (c) (d)

Figure 20. In this experiment, the edge of the forming lobe passes the downstream corner of the
cavity only after four rods have passed (Re = 15.5, ReSr = 15.7). This new lobe shape signals a
dramatic change in the manifold structure in the region of pd. Images are shown for (a) t = 0 s,
(b) t = 0.8 s, (c) t = 1.6 s, and (d ) t = 2.4 s. The fainter dye lines are from earlier lobes that have
had time to cycle back to the turnstile region.

reduction is accompanied by a dramatic change in lobe shape, an example of which
is shown in figure 20. In general, the maximum splitting distance between stable and
unstable manifolds becomes exponentially small when the forcing frequency becomes
large.

We conclude this section by pointing out the changes in transport that occur
for cavities containing more than one recirculating region in the main cavity space.
Perturbing a flow such as the one shown in figure 1(b) typically results in only the
upper flow cell containing dye from the channel. This is because the circulation
amplitude in secondary flow cells decreases approximately a thousand-fold for each
cell added to a deep cavity (Moffatt 1964). Even so, flow perturbations can cause
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separation of the stable and unstable manifolds of the separatrix between the upper
and lower flow cells. The turnstile between the upper and lower cells is located near
the ‘upstream’ wall of the cavity however, as the flow direction is reversed for the lower
separatrix (figure 21). A close-up of the upper turnstile region shows that some of the
undyed portions of the upper flow cell are filled by material from below (figure 22).
Therefore, the tangles of the two flow cells are intertwined by the S1 perturbation.
This also creates a connection between the secondary flow cell and the flow in the
channel. Although we can determine the transport rate between these regions from
experiments such as the one shown in figure 21, we do not consider this issue further
here.

7. T-mode enhancement: purely transient forcing
In this section, we examine the effect of Re and ReSr on transport using transient

forcing. As shown in figure 6, the separatrix is nearly unaffected during a single
sawtooth cycle: streamlines at subsequent times are almost indistinguishable, even
from those of the steady-state case. Despite this, there is significant transport between
the cavity and channel.

The characteristic time T in the Strouhal number is vmax/a in the T-mode, and we
have for the Reynolds–Strouhal combination

ReSr =
W 2

ν

a

vmax
. (7.1)

We show experimental and computational results for 12 6 Re 6 93 and 0.26 6
ReSr 6 5.02.

We isolate the effect of the Reynolds number by varying vmax while keeping a/vmax
constant, whereas we isolate the effect of the Reynolds–Strouhal term by varying
the acceleration while keeping vmax constant. Figure 23 summarizes the experimental
results for lobe size (µ(E)), flux (φ), and mixing region size (Rmix). Each of these
curves exhibits a maximum value for a given Reynolds number, and as seen in the
SN-mode, an increase in the Reynolds number results in increases in µ(E), φ, and
Rmix. The frequency of lobe formation is once per sawtooth period for all reported
values of Re–ReSr.

Figure 24 summarizes the experimental area coverage results for various values of
Re and ReSr. For the case of fixed ReSr (figure 24a), the rate of area coverage and
maximum area coverage increase with Re. As seen in the SN-mode, the rate of area
coverage is initially comparable for Re–ReSr pairs with similar fluxes (figure 24b).
The curves separate because the mixing regions differ for the two experiments. The
curve for the lowest ReSr value illustrates how the maximum area coverage may be
higher even though the flux of material into the cavity is comparatively lower.

Figure 25 shows how the angle at which the lobe enters the cavity (measured relative
to the cavity wall) decreases as ReSr decreases. This reflects the lobe following the
steady-state streamlines more closely in the vicinity of the parabolic point, suggesting
that transport is approaching the adiabatic limit, especially when ReSr < 1. This
result is similar to the adiabatic chaos examined by Jana, Metcalfe & Ottino (1994)
(especially their figure 31) for a hyperbolic point in a bounded flow, reinforcing the
fact that transport near parabolic fixed points can display behaviour quite similar to
that near a hyperbolic saddle. Also note how the dye line in the channel has not yet
passed the downstream corner of the cavity in figure 25(a). The value of t̂ (defined
in figure 6) at which the leading edge of the entraining lobe sweeps downstream
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(a) (b) (c) (d)

Figure 21. The unstable manifold of the lower flow cell (green dye) partially fills the empty portions
of the primary flow cell (red dye). This is characteristic of perturbed transport in deep cavities. We
approximate the separatrix between the two flow cells by injecting a line of green dye deep in the
cavity before the experiment begins. Experimental conditions: S1, Re = 25.0, ReSr = 2.5. (a) d = 99,
(b) d = 494, (c) d = 513, (d ) d = 632.

(a) (b)

0.1W

Figure 22. Closer inspection of images (b) and (d ) from figure 21 reveals the fine structure of the
flow in the turnstile region. Note how the green dye fills the voids between striations of red dye
clearly illustrating the interconnection of the upper and lower flow cells. The green dye present in
the flow channel also illustrates the connection between the fluid in the lower flow cell and the flow
channel. (a) d = 494, (b) d = 632.

increases as ReSr increases, i.e. as the cycle time decreases. The characteristic time for
the diffusion of momentum across the channel is h2/ν = 6.4 s, which is very close to
the cycle time of 10 s for the experiment in figure 25(a).

A Poincaré map of the perturbed flow shows the changes in the asymptotic flow
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Figure 23. Experimental data summarizing (a) the dimensionless lobe size, (b) the flux, and (c) the
size of the mixing region versus forcing frequency for the T-mode. The maximum in the data is not
as clearly pronounced as the Reynolds number decreases. See figure 18 for a description of the data
collection method.
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Figure 24. (a) Increasing Re at fixed ReSr = 1.26 increases the global transport rate as well as the
total area coverage (Re = 31.0 (×), Re = 46.5 (�), Re = 62.0 (�)). (b) The rate of area coverage is
initially similar for the circled data points in figure 23(b), the two curves eventually separate as the
mixing region for ReSr = 3.51 becomes filled at fixed Re = 62.0. (ReSr = 0.63 (4), ReSr = 1.26
(�), ReSr = 3.51 (•)).
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(a) (b) (c)
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Figure 25. The length of a lobe at the end of one sawtooth period increases as ReSr approaches
the adiabatic limit. Lobe area decreases as ReSr decreases, however. Experimental conditions:
(a) ReSr = 2.51, (b) ReSr = 1.26, (c) ReSr = 0.63 (Re = 62.0).

(a) (b)

(c) (d)

Figure 26. Creation of a period-2 island (a–c). (d ) An overlay of the numerical results for the
Poincaré map on the experimental data for d = 3703 (100 revolutions) shows excellent agreement
between the two methods (T-mode, Re = 46.5, ReSr = 1.26).

structure as a function of system parameters. To generate such a map, we use an
initial condition consisting of a line of 56 evenly spaced points spanning the region
between the separatrix and the centre of the elliptic island. The points are advected
for 100 sawtooth cycles. We record a dot for each particle after each period. Particles
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(a) (b) (c)

Figure 27. Poincaré sections for (a) Re = 19.3, (b) Re = 41.2, and (c) Re = 92.9. Eliminating all
particles that leave the cavity (and their previous iterates) identifies the size of the core region (100
revolutions, Sr = 0.014).
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Figure 28. (a) Comparison of the length stretch of a lobe under the sawtooth advection (Re = 19.26
(—–), ReSr = 0.26 and the same lobe in a steady field at the average velocity of the sawtooth
protocol (Re = 9.63 (– - – - –)). (b) The length stretch of the lobe Lch,ca increases with Re (Re = 12.84
(— — —), Re = 19.26 (—–), Re = 25.67 (- - -); ReSr = 0.26).

that leave the cavity have all their dots eliminated. As the number of flow periods
becomes large, the remaining particles generate a Poincaré section. Figure 26 shows
dye slowly filling the region around a large central island that is surrounded by a
period-2 island chain. The numerical map is able to accurately resolve the long-time
structure of the flow (figure 26d ). Figure 27 shows how increasing the Reynolds
number increases the size of the mixing region, and that isolated regions persist even
at the highest Reynolds number studied.

We now narrow our focus from the overall structure of the flow to the advection
of a single lobe in the cavity. Specifically, we use the numerical model to follow the
length stretch of Lch,ca, i.e. that portion of the unstable manifold that enters the cavity
to form the entrained lobe. Tracking the length of the perimeter of a single lobe
quantifies not only the stretching experienced by channel material upon entering the
cavity, but also yields an estimate of how far the lobe has advected along the unstable
manifold. Length stretch also gives some insight into the diffusion length that must
be traversed by solutes trapped in the lamellar structure of the perturbed cavity flow.
The length stretch of a material line is given by l(d)/l(0), where l(d) is the lobe length
at displacement d of the cylinder and l(0) is the initial length of Lch,ca. The initial
condition for each run is a set of 10 000 points distributed along that portion of the
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Figure 29. (a) The SN-mode flux data of figure 18(b) collapse when scaled with the maximum flux
value for each Reynolds number. The peak in the data occurs at Sr ≈ 0.1. (b) The T-mode flux
data (figure 23b) exhibits a characteristic frequency at Sr ≈ 0.04.

separatrix that makes up Lch,ca. This initial condition is determined separately for
each Re–ReSr pair.

First, we compared the stretching of a lobe in the sawtooth flow to that in a
steady flow at the average velocity of the sawtooth wave (figure 28a). After a lag
period, material advecting in the T-mode flow experiences a sustained increase in
length stretch over that of the steady flow. The sudden increase in the length stretch
observed in the steady flow at d ≈ 375 is due to the lobe advecting near the separatrix,
where the velocity is highest compared to the rest of the cavity. The duration of the
period of slow stretching decreases as the Reynolds number increases (figure 28b). We
verified that the stretch rate is indeed exponential, and that the exponential stretch
rate increases with Reynolds number.

8. Summary and conclusions
We have illustrated two approaches for enhancing transport in open cavity flows.

Both methods increase the rate of fluid exchange between a channel and an open cavity
over that of diffusion alone. The trends in transport depend on the flow modification,
as well as the frequency and amplitude of the forcing. The frequency dependence
exhibits a maximum: the flux increases for low frequencies and then decreases when
ReSr exceeds a critical value. The SN-mode flux data in figure 18(b) collapse when
scaled with the maximum flux value and plotted versus Strouhal number (figure 29a),
the optimum occurring at Sr ≈ 0.1. The T-mode flux data also exhibit a characteristic
frequency (figure 29b) at which the flux of material into the cavity is maximized
(Sr ≈ 0.04), but there is more scatter. In both cases, the transport increases with the
amplitude of the forcing for the entire range tested. Another noteworthy result is that
in spite of the stark contrast of the (instantaneous) streamline plots for the two flows
(see figures 5 and 6), the T and S10 systems produce similar transport.

We may qualitatively interpret the local transport in the T- and SN-modes through
a Fourier analysis of the work done on the fluid by a transient velocity pulse. In
the Appendix we show that the fraction of energy in a transient pulse that is not
attenuated by viscosity is

PC = Cν
Re

Sr
M(ReSr), (8.1)
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where C is a constant and M(ReSr) is an increasing function of ReSr; both C and
M(ReSr) depend on the exact waveform of the forcing. Since equation (8.1) refers
to a single cycle of the flow we expect φ ∼ PC , i.e. PC is as a predictive measure
of the flux of material into the cavity through the turnstile. The theory captures
the qualitative features of the flux function for the spatially dependent mode and
transient modifications. The theory predicts that the flux increases linearly for low
frequencies, and decays as 1/Sr for large frequencies.

There are several potential uses of the flow modifications presented here. Some are
eminently practical. For example, Horner et al. (1998) recently studied mass transport
in a perfusion bioreactor for the culture of human tissue cells. This bioreactor consists
of a flow channel with a series of open cavities at the chamber bottom where cells grow.
Channel flow constantly supplies cells with nutrients and removes waste products that
inhibit growth. The use of a pulsatile inlet flow may enhance transport in these types
of chambers. Lobe formation would directly supply channel material to the cells in
the cavity and simultaneously remove cellular waste products that can inhibit growth.
Indeed, pulsatile flow has already been shown to enhance cell output in a tubular
bioreactor containing baffles (Harrison & Mackley 1992). Another unexplored area
of the use of T-type transport enhancement could be in microfluidic mixing devices.
A more theoretical reason to study open chaotic flows is that open flows behave
differently than closed flows, particularly with regard to the effects of advection on
autocatalytic chemical activity (see Tél et al. 2000 for a review of this emerging area).

A primary output of this work is general prescriptions for enhancing heat/mass
transport. An order of magnitude estimate of the time required to diffuse through a
stagnant layer of length H is H2/D, where D is the diffusivity of the solute of interest.
Steady recirculation in the cavity may result in significant transport enhancement,
the so-called ‘stirring’ effect (Chilukuri & Middleman 1983). Enhancement typically
increases with Péclet number, Pe = UH/D. Assuming D ≈ 10−5 cm2 s−1 and a
characteristic velocity in the cavity U ≈ 10−3 cm s−1, we would expect a 30% reduction
in the cleaning time due to the introduction of steady recirculation in the cavity
(Chilukuri & Middleman 1983, figure 3 in their paper); this results in an approximate
cleaning time of 0.7H2/D = 1.4× 106 s. A typical duration of one of our open cavity
experiments is 103 s, a three orders of magnitude increase in the transport rate.

The work supported in part by the Department of Energy, Division of Basic Energy
Sciences (J. M. O.) and ONR Grant No. N00014-97-1-0071 (S. W.).

Appendix. Heuristic analysis of transient forcing on the generation of lobes
in open cavities

Here we derive a functional form for the energy available for lobe formation in
terms of system parameters. This estimate is derived from the power spectrum of the
velocity profile of the boundary forcing. The potential effect of the external time-
dependent forcing is more easily seen in terms of the vorticity ω. In two dimensions,
ω is governed by

ReSr
∂ω

∂t
+ Reu · ∇ω = ∇2ω. (A 1)

As a first approximation, we neglect convection. This simplifies equation (A 1) to

ReSr
∂ω

∂t
= ∇2ω. (A 2)
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Equation (A 2) indicates that any time-varying forcing will generate vorticity in
the flow. In the open cavity flow, vorticity generated at the moving boundary wall
destabilizes the downstream attachment point of the separatrix to generate a lobe
pair.

When is a disturbance large enough to potentially initiate significant transport
and how does the subsequent transport depend on the parameters of the exper-
iment? Equation (A 2) suggests that disturbances with frequencies small compared
to ReSr will be attenuated by inertia while comparatively large frequencies will be
unattenuated. Somewhat arbitrarily we can determine a critical frequency by setting

ReSr =

(
W 2

ν

)
fcrit ∼ 1, (A 3)

where fcrit = 1/T for a waveform of period T . This is not to say that ReSr < 1 is a
cut-off frequency, but it does allow us to calculate a functional dependence by breaking
up the disturbance into attenuated and unattenuated parts. For glycerin containing
10% H2O, ν = 1.58 cm2 s−1 and taking W = 4.445 cm, fcrit ≈ 0.08 Hz. Thus, forcing
producing frequencies much above 0.08 Hz will make the time-derivative acceleration
term have a larger effect. This is an acceleration effect different from a high-Re effect;
in fact if Re is made smaller by lowering vmax, there is no effect on the product ReSr.

To quantify these considerations, first notice that the total power PT (in the Fourier
sense) in a velocity pulse with physically reasonable properties is proportional to the
maximum velocity in the pulse vmax squared times the duration of the pulse T . Using
the definitions of Re and Sr, the total power can be written as

PT = Cν
Re

Sr
, (A 4)

where ν is the kinematic viscosity and gives the correct units for power for a velocity
pulse. The dimensionless constant C depends on the waveform of the pulse and is
calculated from

∫ |g(t)|2dt, where g(t) is the pulse waveform.
How much of the pulse energy is available to excite unattenuated disturbances in

the flow? Any function g(t) of transient forcing can be decomposed into its Fourier
transform. Forcing frequencies f such that ReSr � 1 mean the ∂ω/∂t term in
equation (A 2) is small, while those frequencies such that ReSr � 1 mean the ∂ω/∂t
term is large during their existence. A convenient measure of the likely effect of a
given forcing is then the ratio M of energy in frequencies such that ReSr > 1 to the
total energy in the forcing,

M(ReSr) =

∫ ∞
f̄

|G(f)|2df∫ ∞
0

|G(f)|2df
, (A 5)

where | G(f) |2 is the power spectrum of g(t) and

G(f) =

∫ ∞
−∞
g(t)ei2πftdt (A 6)

is the Fourier transform of g(t). The integration limit f̄ = ν/h2 is a natural damping
frequency dependent on the fluid and system geometry. The definition of ReSr can
be expressed as ReSr = f/f̄.

The total energy going into disturbing the steady fluid motion is PC = PTM.
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Figure 30. Fraction of energy from a transient velocity pulse available for lobe formation as a
function of ReSr for (a) a square pulse and (b) a triangular pulse.

Calculating all this, however, is redundant as the integral of g(t)2 equals the integral
of G(f)2 by Parseval’s theorem. So

PC =

∫ ∞
f̄

|G(f)|2df. (A 7)

For PC 6= 0 we expect to generate some transport because the acceleration term acts
as a transient perturbation on the steady-state flow. As PC , or M, tends towards zero,
we expect the same results as for adiabatic, or infinitely slowly applied, perturbations.

As all transient wave forms g(t) are effectively convolved with a square pulse,
the well known ‘leakage’ of energy to higher frequencies with a square pulse is an
important generator of transient chaos. For a square pulse that turns on at −T and
turns off at T , C = 2 and

M(ReSr) = 2

∫ ∞
2/ReSr

sinc2(πz)dz, (A 8)

where sinc(πz)z ≡ sin(πz)/(πz) and z is a dummy integration variable. For an
appropriate scaling of the characteristic time T , the forcing by the cylindrical rods
can be approximated as a series of square waves. For our experiments we also chose
to use a triangular pulse in order to more easily vary ReSr. For a triangular pulse
that starts at −T and finishes at T , C = 2/3 and

M(ReSr) = 3

∫ ∞
1/ReSr

sinc4(πz)dz. (A 9)

Figure 30 shows M(ReSr) for (a) the square pulse and (b) the triangular pulse as a
function of ReSr.

To summarize, the fraction of energy per transient pulse available to generate lobe
pairs is

PC = Cν
Re

Sr
M(ReSr). (A 10)

PC is a function of both the ratio of Re and Sr and their product. Re/Sr is the
overall amplitude per pulse and ReSr sets the fraction of that energy available to
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cause appreciable fluid acceleration. Also note that PC is proportional to 1/Sr for
large forcing frequencies.

From this analysis we expect that the flux of material into the cavity is proportional
to PC , and this gives the functional dependence of the transport rate on the fluid
parameters. In spite of neglecting the convection term, equation (A 10) agrees quali-
tatively with the experimental results; the experimental and theoretical curves have
similar shapes. More physics must be included before this analysis is a quantitative
predictor of the flux function.
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